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We carried out statistical calculation of the viscosity coefficients of nematic liquid crystals. As the
starting point of calculation, we used the expression for the tensor of viscous stresses obtained within
the framework of the relaxational hydrodynamics of investigated media constructed on the basis of
Zubarev’s method of nonequilibrium statistical ensembles. The relaxational equation for the tensor
order parameter was used to calculate the time correlation functions that determine kinetic coeffi-
cients. The results of theoretical calculations were compared with experimental data on the tempera-
ture dependence for a number of nematogens.

One of the topical problems of the statistical theory of nematic liquid crystals is the description of the
viscous properties of these media. The solution of this problem in a general form was accomplished by one
of the present authors (V. B. Nemtsov) by Zubarev’s method of nonequilibrium statistical ensembles [1, 2].
For this purpose, the equations of generalized relaxation hydrodynamics of nematic liquid crystals were con-
structed, within the framework of which a general expression was obtained for the viscous stress tensor in the
form of the Ericksen−Leslie stress tensor (see, e.g., [3]):

τij = α1ninjnknlekl + α4eij + α5ninkekj + α6njnkeki + α2niNj + α3njNi ,

which takes into account dissipation losses associated with the symmetric part of the tensor of deformation

rates eij = 
1
2

(vi,j + vj,i) and with the rotations of the director relative to the flow which are characterized by the

speed of these rotations N = n
.
 − ω×n (ω = 

1
2

 rot v).

The Leslie coefficients of viscosity αr are determined, in contrast to the phenomenological approach,
by independent coefficients of material tensors. In turn, the material tensors that form viscous properties are
represented in terms of the time correlation functions of the microscopic sources of the densities of dynamic
quantities whose means are the state variables of the systems investigated.

In considering isothermal processes in incompressible nematic liquid crystals, as microscopic state pa-
rameters we take the densities of the dynamic values of the pulse p̂i(x), the tensor order parameter R̂ij(x), and
the matrix of rotation, which in a linear approximation is replaced by the corresponding vector θ

^
i(x) of the

small angles of rotation of molecules [2]:
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where the tensor order parameter per molecule dij is associated with the unit vector c that prescribes its
orientation and with the relation dij = (3cicj − δij)/2. Then, the set of quantities that form the time corre-
lation functions represent the densities of the microscopic stress tensor τ̂ij(x), the source of the tensor
order parameter

J
^

ij
 R (x) =  ∑ 

ν=1

N

ωn
ν (einm dmj

ν  + ejnm dim
ν ) δ (x − xν) (2)

and the source of the vector of the small angle of rotation

J
^

i
 θ (x) =  ∑ 

ν=1

N

 ωi
ν δ (x − xν) . (3)

Microscopic expressions for the enumerated densities of fluxes and sources can be found in deriving
the equations of motion for the state variables [2].

Consequently, within the framework of the foregoing approach, the viscous properties of nematic liq-
uid crystals are described by six tensors of kinetic coefficients which in hydrodynamic approximation (at
small wave vectors and frequencies) are defined by the formulas [2]

aijkl
′  = 

β
V

  ∫ ∫ dxdx′ ∫ 
0

∞

dt exp [− εt] sτ̂ij (x, t) τ̂kl (x′, 0)t , (4)

Eijkl
′  = 

β
V

  ∫ ∫ dxdx′ ∫ 
0

∞

dt exp [− εt] sJ
^

ij
 R (x, t) τ̂kl (x′, 0)t , (5)

λikl = 
β

nV
  ∫ ∫ dxdx′ ∫ 

0

∞

dt exp [− εt] sJ
^

i
 θ (x, t) τ̂kl (x′, 0)� , (6)

Fijkl = 
1
V

 ∫ dxdx′ ∫ 
0

∞

dt exp [− εt] sJ
^

ij
 R (x, t) J^kl

 R (x′, 0)t , (7)

Aikl = 
1

nV
  ∫ ∫ dxdx′ ∫ 

0

∞

dt exp [− εt] sJ
^

i
 θ (x, t) J^kl

 R (x′, 0)t , (8)

bik = 
β

n2V
  ∫ ∫ dxdx′ ∫ 

0

∞

dt exp [− εt] sJ
^

i
 θ (x, t) J^k

 θ (x′, 0)t , (9)

where the space integrals are taken over the volume of the system and the angular brackets denote averaging
over an equilibrium ensemble.
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The number of independent coefficients of tensors is determined by the material symmetry of the
nematic medium, which is described by the group D∞h [3] and by the properties of the symmetry of the time
correlation functions that enter into Eqs. (4)−(9). Here, the tensor aijkl

′  (4), which describes standard contribu-
tions to the viscosity coefficients, in the case considered has six independent coefficients (a2

′ , a3
′ , a5

′ , a6
′ , a7

′ ,
a8

′ ); the tensors Eijkl
′  (5) and λijk (6), which describe the contributions of the interaction of the hydrodynamic

flow of the medium with a mean orientation of molecules, have respectively four (E2
′ , E3

′ , E4
′ , E5

′ ) and two (λ2,
λ3) independent coefficients; the material tensors Fijmn (7), Aijk (8), and bik (9), which describe the contribu-
tions of orientation processes to the viscosity coefficients of nematic liquid crystals, have three (F1, F2, F3),
one (A), and two (b1, b2) independent coefficients, respectively. The coefficients indicated determine the vis-
cosity coefficients of nematic liquid crystals in accordance with the formula [2]

α1 = a8 ,   α4 = a2 + a3 ,   α2 = 
1
2

 γ1 (1 + λ) ,   α3 = 
1
2

 γ1 (1 − λ) ,

α5 = 
1
2

 (a5 + 2a6 + a7 − (γ2
0)2 (γ1

0)−1 + λγ1 (λ + 1)) ,   α6 = 
1
2

 (a5 + 2a6 + a7 − (γ2
0)2 (γ1

0)−1 + λγ1 (λ − 1)) , (10)

where

γ1
0 = a7 − 2a6 + a5 + 2 (a2 − a3) ,   γ2

0 = a7 − a5 ;

a2 = a2
′  + 2βE2

2 F1
−1 ,   a3 = a3

′  + 2βE2
2 F1

−1 ,   a5 = a5
′  + 2β (E2 + E4)2 F3

−1 − 2βE2
2 F1

−1 ,

a6 = a6
′  + 2β (E2 + E4) (E2 + E5) F3

−1 − 2βE2
2 F1

−1 ,   a7 = a7
′  + 2β (E2 + E5)

2 F3
−1 − 2βE2

2 F1
−1 ,

a8 = a8
′  + 2β (E2 − E3)2 F2

−1 − 2β (2E2 + E4 + E5)2 F3
−1 + 2βE2

2 F1
−1 ;

γ1
−1 = b

~
1 + (1 + λ

~
3)

2 (γ1
0)−1 ,   λ = − λ

~
2 + γ2

0 (1 + λ
~

3) (γ1
0)−1 ,

λ
~

2 = λ2 + βA (2E2 + E4 + E5) F3
−1 ,

λ
~

3 = λ3 − βA (E5 − E4) F3
−1 ,   b

~
1 = b1 − βA2 (2F3)−1 .

Thus, the problem of computation of the viscosity coefficients of nematic liquid crystals is reduced to
calculation of the time correlation functions that determine the tensors of material coefficients in accordance
with Eqs. (4)−(9).

In solving this problem, we will take as a point of departure the fact that the orientation dynamics
plays the determining role in the processes that form the viscous properties of nematic liquid crystals. This
conclusion is based on the fact that the tensors of the material coefficients of Eqs. (4)−(9) can be expressed
in terms of the time correlation functions of the tensor order parameter and the tensor of the coefficients of
rotational diffusion. The latter statement rests on the definition of microscopic sources (2) and (3) and also
on the expression for the microscopic stress tensor; this expression was obtained in [4] for the model of the
molecules of a nematic liquid crystal in the form of ellipsoids of revolution, which often is used in investi-
gation of the viscous properties of nematics:

 τij
KD = (2β)−1 



4χdij + bS [(1 − χ) cicmnmnj − (1 + χ) cjcmnmni + 2χ cicjcmcnnmnn]




 ,
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where the parameter of the shape of an ellipsoid of revolution χ is introduced, which is defined in terms of
the ratio p of the large half-axis to the small one according to the formula

χ = 
p2 − 1

p2 + 1
 .

(11)

Based on the single-particle expression obtained, it is possible to formulate the dynamic value of the stress
tensor density, which, with account for the definition of the tensor order parameter (1), is written in the form

β τ̂ij (x) = 2χ 

1 + 

1
3

 bS


 δR

^
ij (x) + bS (1 − χ) δR̂im (x) nmnj −

− bS (1 + χ) δR
^

mj (x) nmni + 
2
3

 χ bSδij R
^

mn (x) nmnn + 
4
3

 χ bSδ R
~̂

ij (x) , (12)

where the quantity R
~̂

ij(x) = R̂ijmn(x)nmnn is determined in terms of the tensor order parameter of the fourth
rank:

R̂ijmn (x) =  ∑ 

ν=1

N

 dij
ν dmn

ν  δ (x − xν) .

Then, as a kinetic equation for calculating the time correlation function, we employ the equation for
the tensor order parameter [2, 5]:

d
dt

 δRij (x, t) = −  ∑ 

α=1

3

 τα
−1 Bijkl

(α) δ Rkl (x, t) , (13)

where δRij = Rij − Rij
0 is the deviation of the tensor order parameter from its equilibrium value and Bijkl

(α) are
Stratonovich’s matrices [6].

Since the equation of the time evolution of the dynamic quantity coincides in form with the equation
of the evolution of the time correlation function of this quantity [7], Eq. (13) allows one to write the corre-
sponding equation for the time correlation function of the tensor order parameter:

d
dt

 gijkl (t) = −  ∑ 

α=1

3

 τα
−1 Bijmn

(α)  gmnkl (t) , (14)

where the indicated time correlation function is defined by the relation

gijkl (x, x′, t) = 
1
V

 sδR
^

ij (x, t) δR
^

kl (x′, 0)t . (15)

Since, according to (1), the tensor order parameter is a symmetric traceless tensor of the second rank, its time
correlation function (15) has three independent coefficients, and its material structure is prescribed by the
formula

gijkl =  ∑ 

α=1

3

 gα Bijmn
(α)  .
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Consequently, the solution of Eq. (15) has the form

gα (t) = gα (0) exp (− t ⁄ τα) ,   τα = 
gα (0)

Fα
 , (16)

where Fα are the independent coefficients of the tensor Fijmn (7) and gα(0) are the independent coefficients
of the static correlation function of the tensor order parameter, which in the single-particle approximation are
determined by the molecular parameters of a nematic medium and the scalar order parameter S in accordance
with the formulas [2]

g1 = 
3n
8

 (1 − S − b−1) ,   g2 = 
3n
4

 (1 + S − 2S2 − 3b−1) ,   g3 = 
3n
2b

 . (17)

Thus, to calculate the tensors (4)−(9) that describe the material properties of nematic liquid crystals,
they are to be expressed with the aid of microscopic sources (2), (3) and microscopic stress tensor (12) in
terms of the time integrals of the time correlation function of the tensor order parameter (15), which are
calculated with the aid of formulas (16) and (17), and in terms of the tensor of the coefficients of rotational
diffusion:

Dik = 
n
V

 ∫ dx ∫ dx′  ∫ 
0

∞

 dt exp (− εt) sω̂i (x, t) ω̂k (x′, 0)t ,

where the dynamic value of the angular-velocity density is defined by the expression

ω̂i (x, t) = 
1
n

  ∑ 

ν=1

N

 ωi
ν (t) δ (x − xν) ,

moreover the introduced tensor of rotational diffusion in the case of a single-axis medium, such as a nematic
liquid crystal, has two independent coefficients (of transverse DM and longitudinal DN diffusion):

Dmn = DM (δmn − nmnn) + DNnmnn .

For the kinetic tensors aijkl
′ , bik, Aijk, and Fijmn, the above-described program of computations is imple-

mented by direct substitution of the equations for the microscopic stress tensor (12) and microscopic sources
of the tensor order parameter (2) and small angles of rotation (3) into the corresponding formulas (4) and
(7)−(9). Then, the independent coefficients of the indicated material tensors are written in the form

a2
′  = a3

′  = 
2

9β
 (bχ)2 









3
b

 + S



2

 G1 + 4S 


3
b

 + S


 G1

′  + 4S2G1
′′


 ,

a5
′  = 

2
9β

 (bχ)2 



− 



3
b

 + S



2

 G1 + 
1
4

 


6
b

 − S + 
3
χ

 S



2

 G3 −

− 4S 


3
b

 + S


 G1

′  + 2S 


6
b

 − S + 
3
χ

 S


 G3

′  − 4S2 (G1
′′  − G3

′′)

 ,

a6
′  = 

2
9β

 (bχ)2 



− 



3
b

 + S



2

 G1 + 
1
4

 






6
b

 − S



2

  − 


3
χ

 S



2



 G3 −
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− 4S 


3
b

 + S


 G1

′  + 2S 


6
b

 − S


 G3

′  − 4S2 (G1
′′ − G3

′′)



 ,

a7
′  = 

2
9β

 (bχ)2 



− 



3
b

 + S



2

 G1 + 
1
4

 


6
b

 − S − 
3
χ

 S



2

 G3 −

− 4S 


3
b

 + S


 G1

′  + 2S 


6
b

 − S − 
3
χ

 S


 G3

′  − 4S2 (G1
′′  − G3

′′)

 ,

a8
′  = 

2
9β

 (bχ)2 








3
b

 + S



2

 G1 + 3 


3
b

 − S



2

 G2 − 


6
b

 − S



2

 G3 + 4S 


3
b

 + S


 G1

′  +

+ 12S 


3
b

 − S


 G2

′  − 8S 

6
b

 − S


 G3

′  − 4S2 (G1
′′  − 3G3

′′  − 4G3
′′ )




 ;

(18)

b1 = 
β
3n

 [(2 + S) DM + (1 − S) DN] ,   β2 = 
βS
n

 (DN − DM) ; (19)

A = 3SDM ; (20)

F1 = 
3
2

 nDM (1 − S + b−1) ,   F2 = 9nDMb−1 ,   F3 = 
3
2

 nDM (2 + S − 4b−1) , (21)

where Gα = gατα, Gα
′  = gα′ τα, and Gα

′′  = gα′′ τα, with the subscript α running from 1 to 3; gα′  and gα′′  are
independent coefficients of static correlation functions determined by the tensor order parameter of fourth
rank; they are expressed in terms of the scalar order parameter S by the formulas

g1
′  = − 

g1

2
 − 

3n

16bS
 (1 − S − 5b−1) ,   g2

′  = 
g2

2
 − 

9n

8bS
 (1 + S − 5b−1 − 2S2) ,

g3
′  = g3 + 

3n
4bS

 (1 − S − 5b−1) ;

g1
′′  = − 

g1

2
 − 2g1

′  + 
3n

16 (bS)2 (5S + 7 − 35b−1) ,

g2
′′  = − 

g2

2
 + 2g2

′  + 
9n

8 (bS)2 (5S + 7 − 35b−1 − 6S2) ,

g3
′′  = g3 + g3

′  − 
3n

4 (bS)2 (5S + 7 − 35b−1) .

It should be noted that in deriving relations (20) and (21) for the independent coefficients of material tensors
Aijk and Fijmn we used the condition of decoupling of correlations [8, 1], which is frequently  applied in the
kinetic theory and which is based on the fact that the time of relaxation of the angular velocity of molecules
in nematic liquid crystals is much smaller than the time of relaxation of the tensor order parameter [2].

In contrast to the case considered above, direct calculation of the tensors Eijkl
′  (5) and λijk (6) encoun-

ters difficulties because the time correlation functions that determine these tensors are odd functions of time
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reversal. Therefore, in [9, 10] a method of alternative computation of these tensors was suggested, which, in
the approximation of small frequencies and wave vectors, leads to the following relations for the tensors con-
sidered:

Eijkl
′  =  ∑ 

α=1

3

 τα
−1 Bijmn

(α)  Bmnkl ,
(22)

λijk = (3n)−1 Apsk  ∑ 

α=1

3

 τα [2χ (3 + bS) Bijps
α  + 3bS (1 − χ) Bimps

α nmnj −

− 3bS (1 + χ) Bmjps
α  nmni + 2χ bSδij Bmnps

α  nmnn] , (23)

where the following notation is introduced:

Bijkl = 
1
V

  ∫ dx ∫ dx′ ∫ 
0

∞

dt exp (− εt) sδR
^

ij (x, t) τ̂kl (x′, 0)t .

The formulas obtained make it possible to avoid the above difficulties in calculation of material ten-
sors that describe the interaction of a hydrodynamic flow and orientations of a medium. On substituting the
definitions of microscopic sources (2) and (3) and microscopic stress tensor (12) into Eqs. (22) and (23), we
obtain the following expressions for their independent coefficients:

E1
′  = (9β)−1 χ [(3 − bS) g2 − 3 (3 + bS) g1 + bS (g2

′  − 3g1
′ )] ,

E2
′  = (3β)−1 χ [(3 + bS) g1 + 2bSg1

′ ] ,

E3
′  = (3β)−1 χ [(3 + bS) g1 − (3 − bS) g2 + 2bS (g1

′  − g2
′ )] ,

E4,5
′  = (6β)−1 χ [(6 − bS) g3 − 2 (3 + bS) g1 + 6bS (g3

′  − g1
′ )] % (6β)−1 bSg3 ;

(24)

λ2 = − χS 
6b−1 − S (1 − 4S)

2 + S − 4b−1
 ,   λ3 = − 

3S2

2 + S − 4b−1
 . (25)

Thus, the coefficients of viscosity of nematic liquid crystals (10) with account for the performed cal-
culations, whose results are represented by formulas (18)−(21), (24), and (25), are expressed in terms of the
coefficient of rotational self-diffusion DM, number density of particles n, scalar order parameter S, and mo-
lecular parameters of the system, namely, the parameter of the shape of a molecule χ and the parameter of
intermolecular interaction b.

The temperature dependence of the scalar order parameter S will be modeled by a function of the
form [11]

S = 



1 − C1 




1 − 

∆T
TNI









C2

 , (26)
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where ∆T = TNI − T is the deviation of the temperature of the medium from the temperature of the phase
change "nematic−isotropic liquid" TNI (since T < TNI, ∆T > 0). With the constants equal to C1 = 0.98 and C2

= 0.22, relation (26) represents in analytical form the dependence of S on temperature in the Maier−Saupe
approximation over the range of existence of a nematic phase with an accuracy of up to 1%.

We take the parameter of intermolecular interaction b equal to 4.5415 [12, 2]; we also avail ourselves
of the fact that the density n practically does not change over the narrow temperature range of the existence
of a mesophase; therefore, we will assume its value to be equal to the mean value over this range.

Statistical calculation of the coefficient of rotational diffusion DM is a separate problem not solved
completely up to now. Therefore, we make use of the available solution that relates the coefficient of self-
diffusion to the coefficient of rotational viscosity γ1 from the experimental values of which the coefficient of
rotational self-diffusion is determined [2].

The definition of the parameter χ (11) in terms of the ratio of the semiaxes of the ellipsoid that
models the shape of a molecule provides an obvious way of finding χ for a known molecular structure of the
substance under study. However, there are a number of factors that make the determination of the considered
parameter ambiguous. First, the molecules of a nematogen can be assumed to be rigid only in a certain ap-
proximation, making the value of the parameter χ "float" around a certain value. Moreover, there is a wide-
spread opinion that as a structural unit of nematogens one should use not a molecule but a certain molecular
cluster [13], and this may also lead to a change in the effective parameter χ. Nevertheless, in what follows,
χ will be calculated precisely on the basis of its definition (11) for each nematogen studied.

Thus, the calculation performed makes it possible to compare theoretical predictions with experimen-
tal data, i.e., the results of measurement of the viscosity coefficients of such nematogens as MBBA (4-
methoxybenzylidene-4′-n-butylanilin, the range of existence of nematic liquid crystals: 22−47oC) [14], DIBAB
(p, p′-dibutylazoxybenzene, 20−31oC), mixture No. 4 (p-methoxy-p-butylazoxybenzene, 26−74oC) [15], and
mixture No. 5 (a mixture of azoxybenzenes, −5−74oC) [16].

Figure 1 presents the dependences of the coefficients of  rotational γ2 and shear α4 viscosities of the
indicated nematogens on the departure of temperature ∆T from the point of phase change "isotropic liquid−ne-
matic."

Figure 2 contains the graphs of the temperature dependence of the Mesovich viscosity coefficients
ηb and ηc (see, e.g., [2, 11]), which are often used in experimental works dealing with the investigation of
the viscous properties of nematic crystals and which are defined by the expressions

 ηa = α4
 ⁄ 2 ,   ηb = ηa + (γ1 + γ3 + 2γ2) ⁄ 4 ,   ηc = ηa + (γ1 + γ3 − 2γ2) ⁄ 4 ,

Fig. 1. Dependence of the coefficients of rotational γ2 and shear α4 vis-
cosity on the temperature difference ∆T. Experimental data: 1) MBBA
[16]; 2) mixture No. 5 [18]; 3) mixture No. 4 [17]; 4) DIBAB [17].
Theoretical calculations: 5) MBBA; 6) mixture No. 4; 7) mixture No. 5;
8) DIBAB. −γ2, α4, Pa⋅sec; ∆T, K.

620



with ηa characterizing the viscosity of a nematic medium when the director is perpendicular to the velocity
of a hydrodynamic flow and its gradient, ηb, when the director is parallel to the direction of the flow, and
ηc, when the director is parallel to the flow velocity gradient. Sometimes, these coefficients are denoted oth-
erwise [11]: η1 = ηc, η2 = ηb, η3 = ηa.

The graphs demonstrate a good agreement of theoretical calculations with experimental data. This dis-
tinguishes the theory developed in the present work from the currently popular theories of the viscosity of
nematic liquid crystals of the type of Kuzuu−Doi [17, 18], which are incapable of describing shear viscosity
of nematic liquid crystals [19].

NOTATION

v, velocity of hydrodynamic flow of a medium; n, unit vector that determines the symmetry axis of
the medium (director); n

.
, time derivative of the director; N, speed of rotations of the director relative to the

flow; τij, tensor of viscous stresses; eij, deformation rate tensor; αr, Leslie viscosity coefficients (r = 1, 2, 3,
4, 5, 6); δij, Kronecker’s symbol; x, radius-vector of the point in space; xν, radius-vector of the ν-th mole-
cule; δ(x − xν), Dirac delta-function; c, unit vector prescribing the orientation of the molecule of the medium;
ων, vector of angular speed of rotation of the νth molecule; ω̂(x), density of the dynamic value of the angular
velocity; eijk, Levi− Civita tensor; p̂i(x), density of the dynamic value of the pulse; R

^
ij(x), density of the dy-

namic value of the tensor order parameter; R
^

ijmn(x), density of the dynamic value of the tensor order parame-
ter of 4th rank; Rij

0, equilibrium value of the tensor order parameter; θ^i(x), density of the dynamic value of
small angles of the rotation of molecules; dij, tensor parameter of the order per molecule; pν, vector of the
pulse of the νth molecule; θν, vector of the angle of rotation of the νth molecule; τ̂ij(x), density of the mi-
croscopic stress tensor; ττij

KD, microscopic stress tensor of Kuzuu−Doi; J
^

ij
R (x), density of the source of the ten-

sor order parameter; J^i
θ (x), density of the source of the vector of the small angle of rotation; N, number of

particles in the system; b, parameter of the intermolecular interaction; aijkl
′ , bik, Aijk, Fijmn, Eijkl

′ , and λijk, ten-
sors of kinetic coefficients; Dij, tensor of the coefficients of rotational diffusion; DM, coefficient of the trans-
verse rotational diffusion; DN, coefficient of longitudinal rotational diffusion; τα, times of relaxation of the
tensor order parameter; n, equilibrium density of the number of particles; S, scalar order parameter; T, abso-
lute temperature; TNI, phase-change temperature of the nematic−isotropic liquid; β, reciprocal thermodynamic
temperature; γ1, γ2, and γ3, coefficients of rotational viscosity.
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